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Abstract

Version 1.4 of TFaNS, tile Tone Fan Noise

Design/Prediction System. has recently been evaluated at
the NASA Glenn Research Center. Data from tests of the

Allison Ultra High Bypass Fan (UHBF) were used to

compare to predicted farfield directivities tbr the radial

stator configuration. There was good agreement between

measured and predicted directivifies at low fan speeds

when rotor effects were neglected in the TFaNS

calculations. At higher fan speeds. TFaNS is shown to be

useful in predicting overall trends rather than absolute

sound pressure levels.

Introduction

The interaction of fan wakes with downstream stator

vanes is a significant source of tone noise in modern

turbofan engines. Accurate fan noise prediction codes are

invaluable tools for engineers working to minimize tone

noise through changes in blading and duct geometry. Until

noise predictions can be generated quickly using

computational aeroacoustic methods, system predictions

that couple results from source and radiation codes are

currently the design engineer's only ,alternative to more

simple approaches. TFaNS. the Tone Fan Noise

Design/Prediction System, is one such code that has

recently been evaluated at the NASA Glenn Research

Center and results of that evaluation will be presented here.

TFaNS was developed by Pratt and Whitney under
contract to the NASA Glenn Research Center. It is a suite

of coupled codes tbr computing upstream and downstream

propagating sound pressure levels, as well as tar-field

directivities. TFaNS consists of five main computer

codes: AWAKEN: CFD/Measured Wake Postprocessor

Version 1.0, SOURCE3D: Rotor Wake/Stator Interaction

Code Version 2.5, Eversman Inlet Radiation Code

Version 3.0. Eversman Aft Radiation Code Version 3.1,

and CUP3D: Fan Noise Coupling Code Version 2.1.

SOURCE3D is a modified version of the BBN/V072

Rotor Wake/Stator Interaction Code. Both codes are well

documented in References 1-5. Both SOURCE3D and

V072 model the blades as twisted flat plates and the duct

as a constant area annulus. V072 assumes axial flow

through the duct while SOURCE3D can include solid

body swirl in the region between the rotor and the stator.
Unlike V072, SOURCE3D creates rotor and stator

acoustic properties files, which are needed as input into

the CUP3D program. The acoustic properties files contain

rotor and stator scattering coefficients and source vector

mode amplitudes for noise emanating from the stator

(Relerences 6-7).

Both of the Eversman Radiation Codes have also been

modified to work within TFaNS. The TFaNS version of

the inlet and aft radiation codes are able to run multiple

modes and harmonics assuming unit mode amplitude

input. Acoustic properties files are also output for use in

the CUP3D program. The Eversman Radiation Codes are
well documented, and the reader is advised to look to

Reference 2 for more detailed information.

The two remaining codes are unique to TFaNS.

CUP3D is a program that will couple the results from
isolated blade row and radiation codes. AWAKEN is a

tool that will create the SOURCE3D input file if the user

chooses to input wake data from either CFD predictions or

from measurements rather than using the wake models

available in the SOURCE3D program.

The evaluation conducted at the NASA Glenn

Research Center compares results from the latest version

of TFaNS (Version 1.4) to experimental data collected

from the Allison Ultra High Bypass Fan (Reference 8).

Three conditions were studied: approach, cutback, and

takeoff. Comparisons were also made to predictions made

earlier by Envia and Nallasamy (Ref. 9) and to results

from the previous version of TFaNS (Version 1.3).

Modeling

The Ultra High Bypass Fan. a low tip speed fan stage

designed by Allison tbr NASA Glenn Research Center,

was used in this study. This fan had four stator

configurations and experiments were conducted to stud},

the effect of swept and leaned stator vanes. For the study

presented here, only the baseline configuration with radial

vanes in the forward position was modeled with TFaNS.

A schematic of this baseline configuration can be seen in
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Figure1, whichalso showsthe boundsof the
computationaldomains. Coordinatesdefiningthe
flowpathweretakenfromTable1andfromFigures39and
40ofReference10.

Carewastakenin creatingthe inputfiles for
SOURCE3Dandtheinletandaftradiationprograms.To
simplifythe duct geometryas requiredby the
SOURCE3Dcode,therealductgeometrywasmodeledas
aconstantareaannulus.Theinnerandouterradiiofthat
annulusweresetequaltothevaluesofthestatorleading
edgehubandtip positions,respectively.Thiswasthe
mostreasonablechoiceconsideringthesignificantarea
changealongtheflowpathandthefactthatthesource
regionwaslocatedatthestatorleadingedge.

Interfaceplanesupstreamanddownstreamoftherotor
andstatormustbespecifiedwithintheSOURCE3Dinput
filein orderto createtheacousticelementsneededby
CUP3D.Anarbitraryreferenceplanewasestablishedat
thestatorleadingedgeandtheductradiusthere,usedin
non-dimensionalization,was11.00inches• Interface
Plane1waschosentobe1.00inchupstreamoftherotor
leadingedge.InterlacePlane2,locatedbetweentherotor
andthestator,was1.397inchesupstreamof thestator
leadingedge,andInterfacePlane3 waschosento be
downstreamofthestatortrailingedge,2.734inchesfrom
thereferenceplane(Figure1).

Two inlet and one exhaust mesh were created for the

forward and aft radiation portions of this problem. The

input plane for the first inlet mesh was coincident at

Interface Plane 1 described above (Figures 2a, 2b, and 2c).

This mesh was used for cases for which the presence of
the rotor acoustic element was taken into account. The

input plane for the second inlet mesh was coincident at

Interface Plane 2 and was used for cases coupled without

the rotor acoustic element (Figures 3a, 3b, and 3c). Only

one exhaust mesh was used in all coupling cases, and the

input plane for this mesh was coincident at Interface

Plane 3 (Figures 4a. 4b, and 4c).

Farfield Boundao' for Farfield Boundary for
Inlet Noise Computations Exhaust Noise Computations

/ \ N

/ \ / \

/ \ Fan OGV / \
/ \ \
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/ Baffle for Exhaust _,_ i .: L__.. Baffle for Inlet Noise_
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Figure I. Ultra High Bypass Fan Baseline Configuration

and Computational Domain Boundaries
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Figure 2a. Inlet Mesh with Input Plane Upstream of the

Rotor Leading Edge: Detail of Mesh Within the Duct

Figure 2b. Inlet Mesh with Input Plane Upstream of the

Rotor Leading Edge: Detail of Mesh Near the Duct

Figure 2c. Inlet Mesh with Input Plane Upstream of the

Rotor Leading Edge: Detail of the Farfield Mesh
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Figure 3a. Inlet Mesh with Input Plane Between the Rotor
and the Stator" Detail of Mesh Within the Duct

Figure 4a. Exhaust Mesh with Input Plane Downstream of
the Stator Trailing Edge: Detail of Mesh Within the Duct

Figure 3b. Inlet Mesh with Input Plane Between the Rotor
and the Stator: Detail of Mesh Near the Duct

Figure 4b. Exhaust Mesh with Input Plane Downstream of
the Stator Trailing Edge: Detail of Mesh Near the Duct
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Figure 3c. Inlet Mesh with Input Plane Between the Rotor
and the Stator: Detail of the Farfield Mesh
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Figure 4c. Exhaust Mesh with Input Plane Downstream of

the Stator Trailing Edge: Detail of the Farfield Mesh
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Results

Comparisons of predicted sound pressure level sideline

directivities to measurements are shown in Figures 5-7.

Results from CUP3D had to be post-processed since noise

at a constant radius rather than at a specified sideline are

normally written to the output file. Two sets of data are

shown in each of the plots--tone data and the broadband

noise level at 2 BPF measured at a sideline 88 inches from

the fan centerline. All predictions should be clipped at the
broadband levels indicated since tone noise below these

levels are unrealistic. Comparisons are presented for three

operating conditions: takeoff, cutback, and approach. The

rotor speed for each case is 9013 rpm, 7291 rpm, and 5206

rpm, respectively.

The graphs in Figure 5 compare the 2 BPF

measurements, the predictions from Envia and Nallasamy

reported in Reference 9, and the TFaNS (Version 1.4)

predictions. The predictions by Envia and Nallasamy are

labeled "V072 + Eversman" in the graphs since they were

generated by combining the results from V072 and the
stand-alone versions of the Eversman radiation codes.

The effects of the rotor were neglected in these TFaNS

(Version 1.4) calculations.

Comparison of the three graphs in Figure 5 show that

the best agreement between the data and the predictions

occurs at the approach condition. As fan speed is

increased, both sets of calculations progressively

overpredict the farfield noise. This degradation is due

mainly to the inadequacy of the source model within the

V072 and TFaNS programs. The simple model used does

not represent the effects of the transonic flowfield at the

higher rotor speeds. Differences between the two

predictions are a result of the ways in which the radiated

source is coupled. TFaNS combines the inlet and aft

radiated noise internally. Noise reflected from rotor and

stator elements are included when the radiated source is

coupled. These reflections are neglected when the V072

results are coupled.

Figure 6 shows the comparison between the data and

results obtained from TFaNS Versions !.3 and 1.4.

Corrections to the coding account for the improvements

seen between the predictions from Versions 1.4 over

Version 1.3. which employ identical physical models of

the problem. Changes to the code improved the

predictions particularly at approach conditions, with

smaller differences seen at the higher tip speeds.

Finally, Figure 7 shows a comparison between the data

and three different cases run with TFaNS (Version 1.4).

Those cases labeled "'w/o Rotor'' are solutions obtained

without including the rotor acoustic properties files in the

coupling scheme. The input plane for the inlet radiation

])'Lkeoff C ¢,_dit_, ,_)

Jz :- .... /"_ J

Cu|back Condid,_m

' ;t 'J ! 1

App!oach Clmdil_,_!

m Sr t'- .

Emi_Ao_ Angle ifor ,18i_cliSideline _,d¢_

Figure 5. Comparison of Predicted and Measured Farfield

Sound Pressure Levels at Takeoff, Cutback, and Approach
Conditions: TFaNS vs. Reference 9 Predictions

lhk_l+fl (undv _<+a
t_

' i
Cnf_ac[ Colld: flee

K..
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Emission Angle ffor _gJlICh Sidelinek deg,

Figure 6. Comparison of Predicted and Measured Farfield

Sound Pressure Levels at Takeoff, Cutback. and Approach

Conditions: TFaNS Version 1.3 vs. Version 1.4
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Figure 7. Comparison of Predicted and Measured Farfield

Sound Pressure Levels at Takeoff. Cutback, and Approach

Conditions: Swirl Effects

predictions. Noise is overpredicted in part, too, by

limitations in the panel method used to calculate the

unsteady pressure distribution on the rotor blade. As

described in detail in Appendix 1 of Reference 7. the

number of panels needed to accurately calculate the blade

unsteady surface pressure distribution becomes prohibitive

as the relative freestream Mach number approaches the

sonic condition.

Conclusions

The evaluation of Version 1.4 of TFaNS at NASA

Glenn Research Center has shown that TFaNS is a useful

noise prediction code particularly at low rotor tip speeds.

Recent changes to the code have improved prediction

accuracy at low speeds, if the influence of the rotor is

omitted from the coupling scheme. At higher tip speeds,

TFaNS (Version 1.4) may still prove to be useful in

predicting overall trends, although absolute noise levels

calculated may be higher than measurements may show.
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